Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat.

نویسندگان

  • Maki Hasegawa
  • Hiroyuki Kusuhara
  • Hitoshi Endou
  • Yuichi Sugiyama
چکیده

Our previous kinetic analyses have shown that rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8) are responsible for the renal uptake of p-aminohippurate and pravastatin, respectively. In this study, their contribution to the renal uptake of organic anions and nucleoside derivatives was examined by investigating the uptake by rOat1- and rOat3-expressing cells and kidney slices. Transfection of rOat1 resulted in an increase of the uptake of temocaprilat (Km = 0.56 microM), 2,4-dichlorophenoxyacetate (2,4-D; Km = 10 microM), and 3'-azido-3'-deoxythymidine (AZT; Km = 43 microM). rOat3-expressing cells showed significant uptake of temocaprilat (Km = 1.4 microM), estrone sulfate (Km = 5.3 microM), dehydroepiandrosterone sulfate (DHEAS; Km = 12 microM), and benzylpenicillin (PCG; Km = 85 microM). All the test compounds were accumulated in kidney slices in a carrier-mediated manner, although the saturable components of AZT and acyclovir were small. The Km of 2,4-D uptake by kidney slices was comparable with that of rOat1, and the corresponding values of DHEAS and PCG were similar to those of rOat3. The uptake of estrone sulfate and temocaprilat by kidney slices consisted of two saturable components, with the Km values of their high-affinity components being similar to those for rOat3 (estrone sulfate), and rOat1 and rOat3 (temocaprilat), respectively. These results suggest that the renal uptake of 2,4-D is mainly accounted for by rOat1 and the uptake of PCG and DHEAS by rOat3, and rOat3 is partly involved in the renal uptake of temocaprilat and estrone sulfate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug uptake systems in liver and kidney: a historic perspective.

Drugs and their metabolites are eliminated mainly by excretion into urine and bile. Studies in whole animals, isolated organs, cells, and membrane vesicles led to the conclusion that different transport systems are responsible for the transport of different classes of organic compounds (small, large, anionic, and cationic). In the early 1990s, functional expression cloning resulted in the ident...

متن کامل

Short Communication Drug Transporter Expression and Localization in Rat Nasal Respiratory and Olfactory Mucosa and Olfactory Bulb

Uptake of drugs and other xenobiotics from the nasal cavity and into either the brain or systemic circulation can occur through several different mechanisms, including paracellular transport and movement along primary olfactory nerve axons, which extend from the nasal cavity to the olfactory bulb of the brain. The present study was conducted to expand knowledge on a third means of uptake, namel...

متن کامل

Drug transporter expression and localization in rat nasal respiratory and olfactory mucosa and olfactory bulb.

Uptake of drugs and other xenobiotics from the nasal cavity and into either the brain or systemic circulation can occur through several different mechanisms, including paracellular transport and movement along primary olfactory nerve axons, which extend from the nasal cavity to the olfactory bulb of the brain. The present study was conducted to expand knowledge on a third means of uptake, namel...

متن کامل

Short Communication Drug Transporter Expression and Localization in Rat Nasal Respiratory and Olfactory Mucosa and Olfactory Bulb

Uptake of drugs and other xenobiotics from the nasal cavity and into either the brain or systemic circulation can occur through several different mechanisms, including paracellular transport and movement along primary olfactory nerve axons, which extend from the nasal cavity to the olfactory bulb of the brain. The present study was conducted to expand knowledge on a third means of uptake, namel...

متن کامل

Short Communication Drug Transporter Expression and Localization in Rat Nasal Respiratory and Olfactory Mucosa and Olfactory Bulb

Uptake of drugs and other xenobiotics from the nasal cavity and into either the brain or systemic circulation can occur through several different mechanisms, including paracellular transport and movement along primary olfactory nerve axons, which extend from the nasal cavity to the olfactory bulb of the brain. The present study was conducted to expand knowledge on a third means of uptake, namel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 305 3  شماره 

صفحات  -

تاریخ انتشار 2003